Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 36(6): 2057-67, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865627

RESUMO

Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. SIGNIFICANCE STATEMENT: Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on local neurotransmitter levels and effects on neighboring neurons. Here, using a novel "opto-dialysis" probe to couple optogenetics and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakefulness and illustrates the utility of "opto-dialysis" for dissecting the complex brain circuitry underlying behavior.


Assuntos
Neurônios Colinérgicos/fisiologia , Prosencéfalo/fisiologia , Vigília/fisiologia , Acetilcolina/metabolismo , Animais , Antagonistas Colinérgicos/administração & dosagem , Antagonistas Colinérgicos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Eletroencefalografia , Eletromiografia , Feminino , Masculino , Camundongos , Microdiálise , Optogenética , Parvalbuminas/metabolismo , Estimulação Luminosa , Prosencéfalo/efeitos dos fármacos , Fases do Sono/fisiologia , Vigília/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
2.
Eur J Neurosci ; 41(2): 182-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25369989

RESUMO

The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex , lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low-theta power (5-7 Hz), but not high-theta (7-9 Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx ]ex and [AD]ex . Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx ]ex , [AD]ex and low-theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex . Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low-theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP.


Assuntos
Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/fisiologia , Homeostase/fisiologia , Sono/fisiologia , Adenosina/metabolismo , Animais , Anticorpos Monoclonais , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/fisiopatologia , Neurônios Colinérgicos/efeitos dos fármacos , Ritmo Delta/efeitos dos fármacos , Ritmo Delta/fisiologia , Homeostase/efeitos dos fármacos , Ácido Láctico/metabolismo , Masculino , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitritos/metabolismo , Compostos Nitrosos/farmacologia , Ácido Pirúvico/metabolismo , Ratos Wistar , Proteínas Inativadoras de Ribossomos Tipo 1 , Saporinas , Sono/efeitos dos fármacos , Privação do Sono/fisiopatologia , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia
4.
J Neurochem ; 116(2): 260-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21062286

RESUMO

Both adenosine and nitric oxide (NO) are known for their role in sleep homeostasis, with the basal forebrain (BF) wakefulness center as an important site of action. Previously, we reported a cascade of homeostatic events, wherein sleep deprivation (SD) induces the production of inducible nitric oxide synthase (iNOS)-dependent NO in BF, leading to enhanced release of extracellular adenosine. In turn, increased BF adenosine leads to enhanced sleep intensity, as measured by increased non-rapid eye movement sleep EEG delta activity. However, the presence and time course of similar events in cortex has not been studied, although a frontal cortical role for the increase in non-rapid eye movement recovery sleep EEG delta power is known. Accordingly, we performed simultaneous hourly microdialysis sample collection from BF and frontal cortex (FC) during 11 h SD. We observed that both areas showed sequential increases in iNOS and NO, followed by increases in adenosine. BF increases began at 1 h SD, whereas FC increases began at 5 h SD. iNOS and Fos-double labeling indicated that iNOS induction occurred in BF and FC wake-active neurons. These data support the role of BF adenosine and NO in sleep homeostasis and indicate the temporal and spatial sequence of sleep homeostatic cascade for NO and adenosine.


Assuntos
Adenosina/metabolismo , Córtex Cerebral/metabolismo , Homeostase/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/fisiologia , Prosencéfalo/metabolismo , Privação do Sono/metabolismo , Fases do Sono/fisiologia , Adenosina/fisiologia , Animais , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/fisiologia , Prosencéfalo/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo
5.
Sleep Med Rev ; 15(2): 123-35, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20970361

RESUMO

Adenosine is directly linked to the energy metabolism of cells. In the central nervous system (CNS) an increase in neuronal activity enhances energy consumption as well as extracellular adenosine concentrations. In most brain areas high extracellular adenosine concentrations, through A1 adenosine receptors, decrease neuronal activity and thus the need for energy. Adenosine may be a final common pathway for various sleep factors. We have identified a relatively specific area, the basal forebrain (BF), which appears to be central in the regulation/execution of recovery sleep after sleep deprivation (SD), or prolonged wakefulness. Adenosine concentration increases in this area during SD, and this increase induces sleep while prevention of the increase during SD abolishes recovery sleep. The increase in adenosine is associated with local changes in energy metabolism as indicated by increases in levels of pyruvate and lactate and increased phosphorylation of AMP-activated protein kinase. The increases in adenosine and sleep are associated with intact cholinergic system since specific lesion of the BF cholinergic cells abolishes both. Whether adenosine during SD is produced by the cholinergic neurons or astrocytes associated with them remains to be explored. An interesting, but so far unexplored question regards the relationship between the local, cortical regulation of sleep homeostasis and the global regulation of the state of sleep as executed by lower brain mechanisms, including the BF. The increase in adenosine concentration during SD also in cortical areas suggests that adenosine may have a role in the local regulation of sleep homeostasis. The core of sleep need is probably related to primitive functions of life, like energy metabolism. It can be noted that this assumption in no way excludes the possibility that later in evolution additional functions may have developed, e.g., related to complex neuronal network functions like memory and learning.


Assuntos
Adenosina/metabolismo , Metabolismo Energético , Homeostase , Sono/fisiologia , Animais , Ritmo Circadiano/fisiologia , Humanos , Camundongos , Prosencéfalo/metabolismo , Vigília/fisiologia
6.
J Neurosci ; 30(40): 13254-64, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20926651

RESUMO

Sleep loss negatively impacts performance, mood, memory, and immune function, but the homeostatic factors that impel sleep after sleep loss are imperfectly understood. Pharmacological studies had implicated the basal forebrain (BF) inducible nitric oxide (NO) synthase (iNOS)-dependent NO as a key homeostatic factor, but its cellular source was obscure. To obtain direct evidence about the cellular source of iNOS-generated NO during sleep deprivation (SD), we used intracerebroventricular perfusion in rats of the cell membrane-permeable dye diaminofluorescein-2/diacetate (DAF-2/DA) that, once intracellular, bound NO and fluoresced. To circumvent the effects of neuronal NOS (nNOS), DAF-2/DA was perfused in the presence of an nNOS inhibitor. SD led to DAF-positive fluorescence only in the BF neurons, not glia. SD increased expression of iNOS, which colocalized with NO in neurons and, more specifically, in prolonged wakefulness-active neurons labeled by Fos. SD-induced iNOS expression in wakefulness-active neurons positively correlated with sleep pressure, as measured by the number of attempts to enter sleep. Importantly, SD did not induce Fos or iNOS in stress-responsive central amygdala and paraventricular hypothalamic neurons, nor did SD elevate corticosterone, suggesting that the SD protocol did not provoke iNOS expression through stress. We conclude that iNOS-produced neuronal NO is an important homeostatic factor promoting recovery sleep after SD.


Assuntos
Núcleo Basal de Meynert/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/biossíntese , Privação do Sono/metabolismo , Vigília/fisiologia , Animais , Núcleo Basal de Meynert/enzimologia , Injeções Intraventriculares/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/enzimologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Ratos , Ratos Wistar , Sono/fisiologia , Privação do Sono/enzimologia , Privação do Sono/fisiopatologia
7.
J Neurosci ; 30(26): 9007-16, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592221

RESUMO

Sleep is one of the most pervasive biological phenomena, but one whose function remains elusive. Although many theories of function, indirect evidence, and even common sense suggest sleep is needed for an increase in brain energy, brain energy levels have not been directly measured with modern technology. We here report that ATP levels, the energy currency of brain cells, show a surge in the initial hours of spontaneous sleep in wake-active but not in sleep-active brain regions of rat. The surge is dependent on sleep but not time of day, since preventing sleep by gentle handling of rats for 3 or 6 h also prevents the surge in ATP. A significant positive correlation was observed between the surge in ATP and EEG non-rapid eye movement delta activity (0.5-4.5 Hz) during spontaneous sleep. Inducing sleep and delta activity by adenosine infusion into basal forebrain during the normally active dark period also increases ATP. Together, these observations suggest that the surge in ATP occurs when the neuronal activity is reduced, as occurs during sleep. The levels of phosphorylated AMP-activated protein kinase (P-AMPK), well known for its role in cellular energy sensing and regulation, and ATP show reciprocal changes. P-AMPK levels are lower during the sleep-induced ATP surge than during wake or sleep deprivation. Together, these results suggest that sleep-induced surge in ATP and the decrease in P-AMPK levels set the stage for increased anabolic processes during sleep and provide insight into the molecular events leading to the restorative biosynthetic processes occurring during sleep.


Assuntos
Trifosfato de Adenosina/metabolismo , Encéfalo/fisiologia , Sono/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/farmacologia , Creatina/metabolismo , Ritmo Delta , Eletroencefalografia , Masculino , Fosfocreatina/metabolismo , Fosforilação , Fotoperíodo , Ratos , Ratos Sprague-Dawley , Privação do Sono/metabolismo , Fases do Sono/efeitos dos fármacos , Fases do Sono/fisiologia , Fatores de Tempo , Vigília/fisiologia
8.
Neurobiol Aging ; 31(11): 2011-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19058880

RESUMO

Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) in the cholinergic basal forebrain (BF) during sleep deprivation (SD) is implicated in adenosine (AD) release and induction of recovery sleep. Aging is associated with impairments in sleep homeostasis, such as decrease in non-rapid eye movement sleep (NREM) intensity following SD. We hypothesized that age related changes in sleep homeostasis may be induced by impairments in NO-mediated sleep induction. To test this hypothesis we measured levels of NO and iNOS in the BF during SD as well as recovery sleep after SD and NO-donor (DETA/NO) infusion into the BF in three age groups of rats (young, 4 months; middle-aged, 14 months; old, 24 months). We found that in aged rats as compared to young (1) recovery NREM sleep intensity was significantly decreased, (2) neither iNOS nor NO increased in the BF during SD, and (3) DETA/NO infusion failed to induce sleep. Together, these results support our hypothesis that aging impairs the mechanism through which NO in the BF induces sleep.


Assuntos
Envelhecimento/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Privação do Sono/metabolismo , Sono/fisiologia , Animais , Masculino , Microdiálise , Prosencéfalo/metabolismo , Ratos , Ratos Wistar , Fases do Sono/fisiologia
9.
Neuroreport ; 20(11): 1013-8, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19491711

RESUMO

Multiple studies indicate that adenosine released in the basal forebrain during prolonged wakefulness could affect recovery sleep. It is still unclear which of adenosine receptors provide its sleep-modulating effects in the basal forebrain. We infused adenosine A1 and A2A receptors antagonists into the rat basal forebrain during sleep deprivation and compared characteristics of recovery non-rapid eye movement (non-REM) sleep (its amount and non-REM sleep delta power) after sleep deprivation, and after sleep deprivation combined with perfusion of antagonists. A1 receptor antagonist significantly reduced recovery sleep amount and delta power, whereas A2A receptor antagonist had no effect on recovery sleep. We conclude that adenosine can promote recovery non-REM sleep when acting through A1 receptors in the basal forebrain.


Assuntos
Homeostase/fisiologia , Prosencéfalo/fisiologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Sono/fisiologia , Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Análise de Variância , Animais , Cateterismo , Eletrodos Implantados , Eletroencefalografia , Homeostase/efeitos dos fármacos , Masculino , Prosencéfalo/efeitos dos fármacos , Ratos , Ratos Wistar , Sono/efeitos dos fármacos , Privação do Sono/tratamento farmacológico , Teobromina/análogos & derivados , Teobromina/farmacologia , Teofilina/análogos & derivados , Teofilina/farmacologia
10.
Psychopharmacology (Berl) ; 201(1): 147-60, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18661122

RESUMO

RATIONALE: During prolonged wakefulness, the concentrations of nitric oxide (NO) and adenosine (AD) increase in the basal forebrain (BF). AD inhibits neuronal activity via adenosine (A1) receptors, thus providing a potential mechanism for sleep facilitation. Although NO in the BF increases adenosine and promotes sleep, it is not clear whether the sleep promotion by NO is mediated through adenosine increase, or NO independently of adenosine could modulate sleep. OBJECTIVE: The objective of the study was to clarify whether NO modulates the discharge rate of BF neurons and whether this effect is mediated via AD. MATERIALS AND METHODS: We measured the discharge rates of BF neurons in anesthetized rats during microdialysis infusion of NO donor alone or in combination with A1 receptor antagonist, 8-cyclopentyl-1,3-dimethylxanthine. RESULTS: NO dose dependently modulated the discharge rate of BF neurons. NO donor (0.5 mM) increased the discharge rates in 48% of neurons and decreased it in 22%. A 1-mM dose decreased it in 55% and increased in 18%. Tactile stimulus affected the discharge rates of most neurons: 60% increased (stimulus-on) it and 14% decreased it (stimulus-off). A 1-mM NO donor predominantly inhibited neurons of both stimulus related types. A small proportion of stimulus-on (23%) neurons but none of the stimulus-off neurons were activated by NO donor. The blockade of A1 receptors partly prevented the inhibitory effect of NO on most of the neurons. This response was more prominent in stimulus-on than in stimulus-off neurons. CONCLUSION: NO modulates the BF neuronal discharge rates in a dose-dependent manner. The inhibitory effect is partly mediated via adenosine A1 receptors.


Assuntos
Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Óxido Nítrico/metabolismo , Prosencéfalo/citologia , Prosencéfalo/efeitos dos fármacos , Adenosina/metabolismo , Antagonistas do Receptor A1 de Adenosina , Animais , Feixe Diagonal de Broca/efeitos dos fármacos , Feixe Diagonal de Broca/fisiologia , Relação Dose-Resposta a Droga , Eletroencefalografia , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Espaço Extracelular/efeitos dos fármacos , Masculino , Microdiálise , Neurônios/citologia , Doadores de Óxido Nítrico/farmacologia , Compostos Nitrosos/farmacologia , Estimulação Física , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/fisiologia , Prosencéfalo/fisiologia , Ratos , Ratos Wistar , Substância Inominada/efeitos dos fármacos , Substância Inominada/fisiologia , Teofilina/análogos & derivados , Teofilina/farmacologia , Percepção do Tato , Uretana/farmacologia
12.
Eur J Neurosci ; 17(4): 863-9, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12603276

RESUMO

Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4-dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce local energy depletion in the basal forebrain of rats. Three-hour DNP infusions induced elevations in extracellular concentrations of lactate, pyruvate and adenosine, as well as increases in non-REM sleep during the following night. Sleep was not affected when DNP was administered to adjacent brain areas, although the metabolic changes were similar. The amount and the timing of the increase in non-REM sleep, as well as in the concentrations of lactate, pyruvate and adenosine with 0.5-1.0 mM DNP infusion, were comparable to those induced by 3 h of sleep deprivation. Here we show that energy depletion in localized brain areas can generate sleep. The energy depletion model of sleep induction could be applied to in vitro research into the cellular mechanisms of prolonged wakefulness.


Assuntos
Metabolismo Energético/fisiologia , Prosencéfalo/metabolismo , Sono/fisiologia , 2,4-Dinitrofenol/farmacologia , Adenosina/metabolismo , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ritmo Circadiano/fisiologia , Relação Dose-Resposta a Droga , Eletroencefalografia/métodos , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácido Láctico/metabolismo , Masculino , Microdiálise/métodos , Cianeto de Potássio/farmacologia , Prosencéfalo/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Ratos , Sono/efeitos dos fármacos , Privação do Sono/metabolismo , Fases do Sono/efeitos dos fármacos , Fases do Sono/fisiologia , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...